Metadata-Version: 2.0 Name: Unidecode Version: 1.0.22 Summary: ASCII transliterations of Unicode text Home-page: UNKNOWN Author: Tomaz Solc Author-email: tomaz.solc@tablix.org License: GPL Platform: UNKNOWN Classifier: License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+) Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 2 Classifier: Programming Language :: Python :: 2.6 Classifier: Programming Language :: Python :: 2.7 Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.3 Classifier: Programming Language :: Python :: 3.4 Classifier: Programming Language :: Python :: 3.5 Classifier: Programming Language :: Python :: 3.6 Classifier: Programming Language :: Python :: Implementation :: CPython Classifier: Programming Language :: Python :: Implementation :: PyPy Classifier: Topic :: Text Processing Classifier: Topic :: Text Processing :: Filters Unidecode, lossy ASCII transliterations of Unicode text ======================================================= It often happens that you have text data in Unicode, but you need to represent it in ASCII. For example when integrating with legacy code that doesn't support Unicode, or for ease of entry of non-Roman names on a US keyboard, or when constructing ASCII machine identifiers from human-readable Unicode strings that should still be somewhat intelligible (a popular example of this is when making an URL slug from an article title). In most of these examples you could represent Unicode characters as `???` or `\\15BA\\15A0\\1610`, to mention two extreme cases. But that's nearly useless to someone who actually wants to read what the text says. What Unidecode provides is a middle road: function `unidecode()` takes Unicode data and tries to represent it in ASCII characters (i.e., the universally displayable characters between 0x00 and 0x7F), where the compromises taken when mapping between two character sets are chosen to be near what a human with a US keyboard would choose. The quality of resulting ASCII representation varies. For languages of western origin it should be between perfect and good. On the other hand transliteration (i.e., conveying, in Roman letters, the pronunciation expressed by the text in some other writing system) of languages like Chinese, Japanese or Korean is a very complex issue and this library does not even attempt to address it. It draws the line at context-free character-by-character mapping. So a good rule of thumb is that the further the script you are transliterating is from Latin alphabet, the worse the transliteration will be. Note that this module generally produces better results than simply stripping accents from characters (which can be done in Python with built-in functions). It is based on hand-tuned character mappings that for example also contain ASCII approximations for symbols and non-Latin alphabets. This is a Python port of `Text::Unidecode` Perl module by Sean M. Burke . Module content -------------- The module exports a function that takes an Unicode object (Python 2.x) or string (Python 3.x) and returns a string (that can be encoded to ASCII bytes in Python 3.x):: >>> from unidecode import unidecode >>> unidecode(u'ko\u017eu\u0161\u010dek') 'kozuscek' >>> unidecode(u'30 \U0001d5c4\U0001d5c6/\U0001d5c1') '30 km/h' >>> unidecode(u"\u5317\u4EB0") 'Bei Jing ' A utility is also included that allows you to transliterate text from the command line in several ways. Reading from standard input:: $ echo hello | unidecode hello from a command line argument:: $ unidecode -c hello hello or from a file:: $ unidecode hello.txt hello The default encoding used by the utility depends on your system locale. You can specify another encoding with the `-e` argument. See `unidecode --help` for a full list of available options. Requirements ------------ Nothing except Python itself. You need a Python build with "wide" Unicode characters (also called "UCS-4 build") in order for unidecode to work correctly with characters outside of Basic Multilingual Plane (BMP). Common characters outside BMP are bold, italic, script, etc. variants of the Latin alphabet intended for mathematical notation. Surrogate pair encoding of "narrow" builds is not supported in unidecode. If your Python build supports "wide" Unicode the following expression will return True:: >>> import sys >>> sys.maxunicode > 0xffff True See PEP 261 for details regarding support for "wide" Unicode characters in Python. Installation ------------ To install the latest version of Unidecode from the Python package index, use these commands:: $ pip install unidecode To install Unidecode from the source distribution and run unit tests, use:: $ python setup.py install $ python setup.py test Performance notes ----------------- By default, `unidecode` optimizes for the use case where most of the strings passed to it are already ASCII-only and no transliteration is necessary (this default might change in future versions). For performance critical applications, two additional functions are exposed: `unidecode_expect_ascii` is optimized for ASCII-only inputs (approximately 5 times faster than `unidecode_expect_nonascii` on 10 character strings, more on longer strings), but slightly slower for non-ASCII inputs. `unidecode_expect_nonascii` takes approximately the same amount of time on ASCII and non-ASCII inputs, but is slightly faster for non-ASCII inputs than `unidecode_expect_ascii`. Apart from differences in run time, both functions produce identical results. For most users of Unidecode, the difference in performance should be negligible. Source ------ You can get the latest development version of Unidecode with:: $ git clone https://www.tablix.org/~avian/git/unidecode.git There is also an official mirror of this repository on GitHub at https://github.com/avian2/unidecode Contact ------- Please send bug reports, patches and suggestions for Unidecode to tomaz.solc@tablix.org. Alternatively, you can also open a ticket or pull request at https://github.com/avian2/unidecode Copyright --------- Original character transliteration tables: Copyright 2001, Sean M. Burke , all rights reserved. Python code and later additions: Copyright 2018, Tomaz Solc This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. The programs and documentation in this dist are distributed in the hope that they will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. .. vim: set filetype=rst: